# N25 – Gases

# Review

# N25 – Gases

# **A Review**

Target: I can make sure that I remember the \*concepts\* behind Gas Laws, and don't just focus on the mathematical equations!

#### Pressure Buildup in a Bottle of Champagne



## **The Nature of Gases**

- Expand to fill their containers
- Are fluid they flow
- Have low density

 $_{\odot}$  1/1000 the density of the equivalent liquid or solid

- Are compressible
- They effuse and diffuse

#### **Pressure**

- Caused by the collisions of molecules with the walls of a container
- Equal to force/unit area
- SI units = Newton/meter<sup>2</sup> = 1 Pascal (Pa)
- 1 atmosphere = 101,325 Pa
- 1 atmosphere = 1 atm = 760 mm Hg = 760 torr

#### **Standard Temperature and Pressure "STP"**

- *P* = 1 atmosphere, 760 torr
- $T = 0^{\circ}C$ , 273 Kelvins
- The molar volume of an ideal gas is 22.42 liters at STP

#### **Standard Molar Volume**



Equal volumes of all gases at the same temperature and pressure contain the same number of molecules. - Amedeo Avogadro

# Molar Volume

• The volume occupied by one mole of a substance is its molar volume at STP (T = 273 K or 0 °C and P = 1 atm).



### **Ideal Gases**



Ideal gases are imaginary gases that perfectly fit all of the assumptions of the KINETIC MOLECULAR THEORY

- 1. Gases consist of tiny point particles that are far apart relative to their size.
- 2. Collisions between gas particles and between particles and the walls of the container are **elastic collisions** – *meaning no kinetic energy is lost in elastic collisions*

## **Ideal Gases (continued)**

- 3. Gas particles are in **constant**, **rapid**, **straight line motion**. They therefore **possess kinetic energy**, the energy of motion. (Sometimes described as "chaotic" because the particles all travel individually, not as a group, so it looks like they are bouncing around all crazy, but they are each individually traveling in a straight line.)
- 4. There are **no forces of attraction or repulsion** between gas particles

### **Ideal Gases (continued)**

 The average <u>kinetic energy</u> of gas particles <u>depends on</u> <u>temperature</u>, not on the identity of the particle. (proportional to KELVIN temperature not Celsius!)

(There is a **distribution of speeds** at a given temperature. Therefore, there is an **average kinetic energy** of the sample.)

#### **Ideal Gases (continued)**



#### YouTube Link to Presentation:

#### https://youtu.be/2mMIMRP0ACY